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Quantum mechanics of non-linear systems 

I Bakas? and A C Kakas 
The Blackett Laboratory, Imperial College of Science and Technology, London SW7 2BZ, 
U K  

Received 3 October 1986, in  final form 13 February 1987 

Abstract. A generalisation of Weyl’s correspondence rule and the associated Moyal bracket 
for systems with non-linear phase spaces that admit symplectic transitive group actions is 
presented. This provides a simple account with explicit constructions of some of the general 
results of Bayen er al. 

1. Introduction 

The standard Dirac quantisation algorithm of replacing Poisson brackets with operator 
commutators does not provide a completely satisfactory connection between the 
classical and quantum theories. Although the intuitive ideas underlying this relation 
are clear, the whole procedure cannot be followed through. Van Hove’s theorem (see, 
e.g., Chernoff 1981) proves the existence of mathematical obstructions to the construc- 
tion of a full quantisation map. In 1949, Moyal introduced a new bracket for functions 
on the classical phase space that replaces the Poisson one in the quantisation procedure. 
This bracket is closely related to Weyl’s correspondence rule between classical and 
quantum observables (Weyl 1928). The new Lie algebra associated with this bracket 
is a deformation of the Poisson Lie algebra which is recovered in the contraction limit 
h+0.  

Later Bayen et a1 (1978) presented an extensive study of deformations of the 
algebras associated with general phase spaces and argued that it is possible to under- 
stand quantisation as a deformation of the classical Poisson Lie algebra of observables. 
This involved a general mathematical study of such deformations together with applica- 
tions to various quantum mechanical systems. Since then, the same group of authors 
and others have developed these ideas further (see, e.g., Arnal et a1 1983, Cahen and 
Gutts 1982, Fronsdal 1978, Lichnerowicz 1983) (for an extensive list of references, see 
NATO (1986)). 

In this paper we study the generalisation of Weyl’s correspondence rule and the 
Moyal bracket to systems with non-linear phase spaces that admit symplectic transitive 
group actions. Our approach follows simple arguments with emphasis on the correspon- 
dence rules providing a simple account with explicit constructions of the general results 
of Bayen et a1 for this class of systems. We review briefly (0 2 )  a quantisation scheme 
for the kinematics of these systems which provides globally well defined basic observ- 
ables through a symplectic transitive G-group action. Within this framework a corre- 
spondence rule together with an associated deformation of the classical Poisson algebra 
is constructed (§  3). This coincides with the general L(G)-invariant * product of Bayen 

t Present address: Center for Relativity, University of Texas, Austin, TX 78712, USA. 
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et a1 (1978). In our work, the choice of an  invariant subalgebra of the Poisson algebra 
of all physical observables is used first to construct correspondence rules. The new 
algebra is then constructed from these rules rather than through general mathematical 
considerations of deformations of the Poisson algebra. In D 4, a discussion of some 
examples is presented. 

2. Selection of basic observables 

Consider a classical physical system whose phase space is the symplectic manifold S. 
Dynamical evolution manifests itself as the flow lines of the Hamiltonian vector field 
tH, defined in terms of the Hamiltonian function H E C'(S, R) as 

ieHw := d H (2.1) 

where w is the symplectic 2-form on S and C"(S, R) is the space of infinitely differenti- 
able functions from S into R. Here, itHw denotes the interior product of the 2-form 
w with the vector field tH (and hence is a 1-form). The map from C"(S,R) into 
HVF(S), the space of Hamiltonian vector fields on S defined by (2.1), is a homomorphism 
with kernel the real numbers R, as any two Hamiltonian functions that differ by a 
constant C E R  provide the same element in HVF(S). The Poisson bracket of two 
functions f, g E C"(S, R) is defined to be 

{ J  g)PB'= 6g) (2.2) 

(see Abraham and Marsden (1978) for more details of symplectic geometry). 
Darboux's theorem asserts the existence of a local coordinate system (q' ,  p , )  on S, 

k, j = 1,2 ,  . . . , f dim S, called canonical coordinates, in which the symplectic form 
becomes w = dqk  A dp, and hence the Poisson bracket takes the (familiar) form 

The space C"(S,R) is endowed with two different mathematical structures: an  
associative Abelian algebra under the usual dot product of functions and a Lie algebra 
under the Poisson bracket. 

In the canonical quantisation of a classical system one traditionally attempts to 
impose the Heisenberg commutation relations, 

[4,, A] = ih8,kU (2.4) 

between the basic observables. ( In  (2.4) and from now on i =a.) However, if S is 
not a linear space, the canonical coordinates q k ,  p, are not globally defined and the 
commutation relations (2.4) may not be appropriate. 

Recently, a method has been proposed (Isham 1984, Isham and Kakas 1984) that 
selects a set of globally defined basic observables in a group theoretical manner. One 
considers phase spaces that admit a connected Lie group G acting symplectically, 
transitively and almost effectivelyt. Then the map 

( 2 . 5 )  y : L ( G )  + HVF( S )  

+ For linear phase spaces, the Weyl-Heisenberg group with commutation relations (2.4) acts in this way by 
translations. 
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that attaches a HVF y A  to each element A E L(G)  of the Lie algebra of the group G, via 

where s E S and f~ C"(S, R) ,  is an isomorphism into the set of Hamiltonian vector 
fields on S. This is ensured by the action of G on S considered above. We now 
associate the preferred class of physical observables, PA E C"(S, R), with L(G) ,  defined 
by the following equation: 

Y A  = ' [ P A .  (2.7) 

This is summarised in the diagram 

In (2.8), the sequence of maps 

o -, IW 3 C"( S, R) + HVF(S) + 0 

is an exact sequence'r; R + C"(S, R) is the natural inclusion of R (the constant functions) 
in C"( S, R) and R also coincides with the kernel of the homomorphism C'(S, R) + 

HVF(S) defined by (2.1). The induced map P :  L(G)+ C"(S, R) (i.e. P :  A-P,) is 
called the momentum map. Furthermore, we demand that P be linear and a Lie algebra 
isomorphism: 

P B > P B =  P[A.B] A, B E  L(G) .  (2.9) 

maps introduced above we note that -[qa,sl = y[A3B1 = [ y A ,  Y 1 = [ 5 P A ,  5PBl = -5{PA.P€JpB 

In general this may not be possible, since {PA, PB}pB- PIA;] # 0. Indeed, using the 

and hence (since the kernel of (2.1) is R) 

{ P A ,  PB}PE3-P[A.B]=Z(A, (2.10) 

holds in general. z :  L ( G )  x L(G)  + R is a real valued 2-cocycle of the Lie algebra 
cohomology. As such, it satisfies the properties 

( 9  z ( A , B ) = - z ( B , A )  

(i i)  4 4  [ B ,  C l ) + z ( B ,  [C, A l ) + z ( C ,  [A ,  BI )=O.  

A 2-cocycle is trivial if it has the form z(A, B )  = (d ,  [A ,  B ] )  for some d E L*(G), the 
dual of the Lie algebra of G (( ) denotes the usual pairing between L*(G) and L(G) ) .  
In  this case we define 

P>=PA+(d,  A )  (2.11) 

which satisfy (2.9). If z is not trivial, then we extend centrally L ( G )  with the aid of 
R and obtain L(G')  = L(G)OR in order to achieve the desired Lie algebra isomorphism. 
The group G (or G') will be called the canonical group and its Lie algebra generators 
{PA}  provide a preferred class of globally defined observables for quantisation on S. 
The study of the unitary irreducible representations ( U I R )  of the canonical group G 

t Recall that a sequence of  homomorphisms is exact if, for each pair of consecutive maps, the image of the 
first is equal to the kernel of the second. Here '0' denotes zero (0 E R). 
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(denoting from now on G or G') provides the quantum Hilbert space X and representa- 
tions of the basic observables { P A ,  A E L(G)}  with self-adjoint operators on X. For 
systems with linear phase spaces, the Heisenberg-Weyl group (G,) is singled out with 
(2.4) as commutation relations, but for non-linear theories more general canonical 
groups result. We present the examples S = R2 and R x R, in B 4, although the interested 
reader may find more details and examples of the general construction for selecting 
the set of basic observables in Isham (1984). 

3. General construction 

3.1. Correspondence rule 

The study of quantum dynamics requires the construction of a linear map 8 (correspon- 
dence rule) that associates an unambiguous self-adjoint (or at least Hermitian) operator 
S(f) on %' with the classical physical observables f~ C"(S, R). I t  has to satisfy 
6( PA,) = a, (in any particular U I R  of G)  for all the basic observables, which in turn 
implies 

a ( { P A l ,  PA,)PB) = - ( i / h ) [ a f ,  (3.1) 

Because of Van Hove's theorem (Chernoff 1981), such a map cannot be a full quantisa- 
tion (at least for theories with linear phase spaces), i.e. it is not possible to satisfy (3.1) 
for an arbitrary pair of physical observables f, ,f2€ C"(S, R). To overcome this, we 
construct a new h-dependent classical algebra with the property that it tends to the 
usual one as h --* 0, i.e. it is a deformation of the Poisson algebra. 

The global group theoretical framework for handling the kinematical aspects of 
quantisation described in the previous section affords a natural construction for a 
correspondence rule?. The kinematical observables of the classical theory are in general 
required to have the property that every other physical observable can be expressed 
in terms of these. (This then holds in the quantum theory by requiring that the 
representation of the canonical group is irreducible.) 

The transitivity of the canonical group action on S ensures that every function 
f~ C"(S, R) can be locally expressed as a function of the basic observables {PAL} .  
This is due to the fact that the G action enables us to locally embed the phase space 
S in the dual of the Lie algebra of G, L*(G), as an orbit of the coadjoint action of G 
on L*(G) (Kirillov orbit). Recall that the coadjoint action ad,* of G on L*(G) is 
defined by 

(ad: d, A) = (d, ad, A) 

where ad, is the adjoint action of G on L(G) .  I t  is known that the orbits of the 
coadjoint action are symplectic manifolds (Kirillov 1976a, b). The immersion J :  S +  
L*(G), known as Souriau's J-momentum map (Souriau 1970), is defined in terms of 
the momentum map P via 

( J ( s ) ,  Ak) = p A k ( s )  s E s. (3.2) 

dEL*(G) ,AEL(G) ,gEG 

* In trying to extend the Weyl correspondence to theories with a general homogeneous phase space S 
( = G/G,), one might conjecture that harmonic analysis on G/G, will play a major role. However, this can 
give rise to correspondence rules only for special cases and hence cannot provide a complete generalisation. 
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To make more precise the connection with the orbits of the coadjoint action, we 
consider the following commutative diagram: 

J 
S -  L*(G) 

'8 1 , 'r; I,(s):=gs S € S  

s - L*(G) 

where T~ = ad,*--l+ z(g). J is called adz equivariant if z(g) = 0. ( In  general, the obstruc- 
tions to adz  equivariance are provided by the l-cocycles z :  G+ L*(G) of the group 
cohomology; their 'infinitesimal' version is given by the Lie algebra 2-cocycles z( A, B )  
of Q 2 . )  Here we are considering adz equivariance for J and so from the above 
commutative diagram we have that J (gs)  = adg-l(J(s)), i.e. J maps S onto an orbit of 
the ad* action of G on L*(G). Further technical details can be found in Abraham 
and Marsden (1978).  

We will consider here only those physical observables fa which can be expressed 
globally as a function of the basic observables { P A ( } .  Hence there exists a function Ffo 
in C"(R", R) such that, for each s E S, 

fo(s) = F , & h , W , .  . . , P*, , (S))  (3 .3 )  

(3 .4 )  

(3 .5 )  
Consequently, an observable fo satisfying equation (3 .4)  can be uniquely associated 
with a function f: L*(G) + U2 defined by 

f (x) :=F/ , (x , , . . . ,x , )  (3 .6)  

where x/ := (x, A,)  are the coordinate functions on L*(G). The functions f o  and f are 
related by 

f o b )  = f a  J ( S h  (3.7) 
Having associated the classical observables fa on S with functions on the linear 

space L*(G) = R", we can apply Fourier analysis to obtain 

(3 .8)  

where 

? ( C Y )  =- 1 f (x )  exp(-i(x, CY)) d"x. (3 .9 )  
J ( 2 4 "  L* (G)  

For any point x E L*(G) such that x = J ( s )  for some x E S, we have from (3 .8) ,  using 
equation (3 .4) ,  
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k where a 
Hence, from equation (3.7), 

a k A k  (and so by (3.2), ( J ( s ) ,  a ) = X . ; ; f s ,  a k ( J ( s ) , A k ) = X i e I  a PAA).  

(3.10) 

Equation (3.10) has the desirable feature that the basic 1 observables appear in a linear 
way and hence we can define the quantum operator Fo corresponding to fo by 

This is a generalisation of Weyl's correspondence rule for systems with non-linear 
phase space. 

At this stage, we would like to clarify a point that has not been mentioned so far. 
In general, the centre of the universal enveloping algebra of a Lie algebra L(G)  is not 
trivial, which implies the existence of Casimirs. They are constant on the Kirillov 
orbits and they give rise to Casimir functions C over the whole of L*(G), i.e. { C , f }  = 0 
for all f~ C"(L*(G), R), where the Poisson bracket on C"(L*(G),  R) is defined via 
(Kirillov 1976a, b) 

C i  being the structure constants of L(G) .  Upon quantisatio;, they are proportional 
to the identity operator, and so the correspondence rule fo-f F,, described via (3.1 l) ,  
is well defined despite the existence of Casimirs. 

The operator F, in (3.11) is defined in the weak sense, i.e. in terms of the matrix 
elements 

J d"a 1 d"xf(x) exp(-i(x, (U)) + I ,  exp i C a ' ~ ~  +2 ( ( /3, ^> 
where +,, I,!I~ are elements of the Hilbert space X of the irreducible representation of 
G that one chooses for quantisation of the kinematics. There are no obvious conditions 
on f that ensure that these integrals will converge but in our framework these, and 
hence the operators $,, exist for a large class of observables. Specifically, whenever 
f, is a polynomial of the {PA(} ,  since f ( a )  is a distribution of finite support these 
integrals clearly exist in the distributional sense for all t,b in the Garding domain of 
the U I R  of G .  Under the uniform convergence topology of C"(S,R), polynomial 
functions are dense in the space of functions of compact support on R". Hence, for 
any observable fo where f has compact support, theJe exists a sequence of polynomials 
(fm) that tends to J: The corresponding sequence F,,, of operators converges as rn + CC 

due to the boundedness of the operator exp(i Cy=,  a'Al). The operator Eo is then 
defined to be this limit?. (From now on, we drop the 0 subscript for convenience.) 

The correspondence rule 6 described by (3.1 1) provides an unambiguous on!-to;one 
correspondence between classical and Hermitian quantum observables F c F+$.  

t We note that the theory of pseudodifferential operators (Hormander  1979) provides an  appropriate 
mathematical framework for (3.11) in the case of linear phase spaces and the Weyl g:oup. 
$ T o  the best of ou r  knowledge, there are  no general conditions on f to ensure that F is self-adjoint. This 
problem is under  investigation. 
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Moreover, it is a linear map with the required property 6( pA, )  = A,. Note that if f i(g) 
is a U I R  of the canonical group G, then the following intertwining relation holds: 

fi(g)$(A,, . . . , A,) fi-'(g) = $(p:dgAl,< e , p:d,A,,). (3.12) 

The proof follows from the linearity of the momentum map P. Hence the correspon- 
dence rule (3.1 1) is a basis-independent construction as A/ + gA,g-' results in a unitary 
equivalent operator to $(A,). 

3.2. Generalised structures 

Classically, C"(S, R) is endowed with an Abelian associative algebra structure under 
the usual dot product of functions and with a Lie algebra structure under the Poisson 
bracket. Their precise relation with the corresponding quantum algebras is the essence 
of the present section. The whole idea here is based on the fact that, given a non- 
commutative associative algebra structure on the space of C" functions over a manifold, 
a Lie algebra structure is induced by defining the Lie bracket to be the commutator 
with respect to the non-commutative product. This is a very important ingredient in 
investigating the relation between the classical and quantum algebraic structures, as 
the desired h deformation of the classical Poisson bracket may be induced by deforming 
the usual product of functions over the phase space to a non-commutative (but still 
associative) product. In particular, our goal would be to first introduce a non-Abelian 
associative algebra structure over the space of classical observables (isomorphic to the 
quantum one under the product of operators) and then induce a Lie algebra structure 
(isomorphic by construction to the quantum one under - (i /  h ) [  , I), which admits a 
h expansion around the classical Poisson bracket algebra. More precisely, we have 
the following. 

Proposition 3.1. The quantum algebra of operators under the dot product is isomorphic 
to the algebra of their corresponding classical functions (cf (3.1 1)) under f l  0 f2 defined 
by 

(fl 'fZ)(PAI(S)r * ,  . 9 ='; I dna d"P.?l(a)f2(P) 
(2.rr) 

(3.13) 

where the 0' product denotes the G-group product law in the ( a l ,  . . . , a,) parametri- 
sation. 

Pro05 Consider the product el - f i 2  of two quantum operators which can be expressed 
via (3.11) as 

(3.14) 

where 

(3.15) 
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is a U I R  of the canonical group G. Let us introduce 

(3.16) 

where a 0' p = ( a I , .  . . , a,) 0' ( P I , .  . . , P,,) := y = ( y , ,  . . . , y,,) denotes the group law 
product in the ( a , ,  . . . , a,) parametrisation (3.1$), a-' denotes the inverse with respect 
to 0' in the same parametrisation and p is the left Haar measure on G, 

d " a ~ d a l ,  . . . ,  d a , = T ( a ) d p ( a )  

(the factor T ( a )  is de*fned in such, a way that it compensates between d'a and d p ( a ) ) .  
Then f i ( a ) f i ( p ) =  U ( a  o ' p )  = U(y)  and, according to our notation, we have p = 
a-' 0' y. Consequently, using the left invariance of p, we obtain 

d"pfl(p) = d " ( a - ' ~ ' y ) . f ~ ( a - ' o '  y )  = d p ( a - ' o '  y)T(a- 'o '  y ) j ( a - ' o ' y )  

So (3.14) takes the form 

(3.17) 

and hence, in view of the correspondence rule (3.1 l ) ,  the function f, of2 defined by 

has fi, . as its corresponding quantum operator. Combination of (3.16) and (3.18) 
and the use of the left invariance of the measure p concludes the proof and simul- 
taneously provides us with the definition of the 0 product over the space of classical 
observables. The expression (3.13) makes manifest its close relation with the 0' product 
law of the canonical group: the non-Abelian nature of the canonical group is responsible 
for the non-commutativity of the 0 product. 

An immediate consequence of (3.13) is the following corollary. 

Corollary 3.2. The 0 product is associative and non-Abelian. 

This product is a generalisation of the Moyal product (Moyal 1949). We will now use 
proposition 3.1 to construct a deformation of the Poisson Lie algebra. We introduce 
h in the commutation relations of L(G)  so that the following conditions are satisfied: 

(i) 

( i i )  L ( G h )  becomes Abelian as h + 0. (3.19) 

For the canonical groups G considered by Isham, (3.19) can be imposed consistently 
(Isham 1984). These conditions provide the generalisation of the role that h plays in 
the Heisenberg- Weyl commutation relations to more general canonical groups. Con- 
sequently, the G-group product law a 0' p admits a (Taylor) h expansion: 

L ( G h )  is isomorphic to L ( G h = ' )  = L ( G )  

(3.20) 
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and so 

thus being a non-trivial deformation of the usual dot product of functions 

f 1 0 f 2 = f ,  . f i + h ~ l ( f l , f * ) + h 2 K 2 ( f l , f 2 ) + . . .  . 
The following follows from the associativity of the 0 product. 

Corollary 3.3. For all U = 0, 1,2, . . . , 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

The interesting feature is that the 0 product induces a deformation of the Poisson 
bracket Lie algebra as well. Indeed, we can define the bracket 

(3 .25 )  {{fl , f 2 } }  := - ( i /  )(fl 0 f 2  - f 2  0 fl ) 

which satisfies 

{if, 0 f 2  9 f 3 1 )  = fl O { I f 2  1 f 3 1 )  + I fl 3 f3)) 0 f 2  . (3.26) 

Theorem 3.4. The space of classical physical observables, endowed with the { {  , }}  
bracket, is a Lie algebra which is isomorphic to the quantum algebra of the correspond- 
ing operators under the - ( i /  h ) [  , ] commutator. 

The proof is an  immediate consequence of the definitions of the relevant algebras. 
The expansion (3.20) generates an h expansion of the {{f, , f 2 } }  bracket in the form 

(3.27) 

whose O( h )  terms are determined by the 0’ group law. For theories with linear phase 
spaces one again recovers Moyal’s results. This will be demonstrated in Q 4, together 
with the Q = [w, example. 
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Proposition 3.5. In the h + 0 limit, the { { f ,  ,fi}} bracket contracts to the Poisson bracket 
for all polynomial functions of the basic observables. 

Proof First notice that {{  pAlr  p A , ) }  = { p A l r  pA,}PB for all the basic observables, as 
6( pA,)  = A,. For monomial functions of the basic observables, equations (3.22), (3.26) 
and (3.27) imply 

p A k } } = { { P A l  P A ~ } } + o ( h )  

= P A ,  0 {PA, ,  P A A } P B +  { P A I ,  P A , } p e  0 P A ,  + O( h )  

= { P A ,  . P A , ,  P A I  )PB+ O'( h 1. 
Similarly, we generalise to any polynomial function of the basic obervables and hence 

{ { f l ~ f i } } = { f l , f i } p B + O ( ~ )  

as stated. For non-polynomial functions of the basic observables the Poisson bracket 
limit can be ensured by requiring that, in the limit h +0, the {{ , }} bracket becomes 
a local Lie algebra? as defined by Kirillov (1976a, b). This local property distinguishes 
the Poisson algebra among all possible Lie algebras that can be defined on C"(S, R). 
A necessary and sufficient condition for the {{ , }} bracket in equation (3.25) to become 
a local Lie algebra as h + 0 is that the h deformations of G are such that ( d l d h )  
( a  0' p)flh=o are linear in both a, and P I .  

In particular, provided that the L(Gh)  commutation relations are of the following 
form: 

[A,, A,] = ihCfiAk 

Cf: being the structure constants of L(G) ,  the Baker-Hausdorff formulae 

imply that 

In summary, what we have constructed here is a deformation of the Poisson Lie 

~ ~ f l , f 2 > ~ = ~ f i , f 2 ~ P B + ~ ~ l ( f i r f * ) + ~ 2 ~ * ( f i ~ f 2 ) + . .  . (3.28) 

where AI, A 2 ,  . . . are specified by the G-group product law. This coincides with the 
general results of Bayen et al. Here it has been derived using different methods, i.e. 
through explicit correspondence rules rather than general mathematical considerations 
of deformations of the Poisson algebra. 

algebra, 

4. Examples 

The generalised Lie bracket { {  , }} algebra that has been discussed above may be 
quantised unambiguously via { {  , } }+  - ( i / h ) [  , ] which thus replaces the Dirac 

t [ , 3 is a local Lie algebra over C " ( M ,  R )  if ( i )  it is a Lie algebra, ( i i )  [s, , sz] is continuous jointly in the 
variables s, , s2 and  ( i i i )  the support  supp[s ,  , s2 j  c supp  s I  n supp  s2 for all sI , s2 in C"( M ,  W). 
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quantisation algorithm { , }pB-+ - ( i /h ) [  , 1. As such it provides an intermediate 
(although unphysical) classical structure best suited for describing the relation between 
the classical and quantum theories. The general expression for the {{ , }} bracket has 
been constructed in terms of the canonical group product law (cf (3.27)). Its study 
involves the use of the whole of L*(G) rather than just an individual Kirillov orbit 
which is locally isomorphic to a given G-homogeneous phase space S. 

The simplest examples that may be demonstrated are provided by the theories with 
classical configuration spaces Q = R, R, whose associated canonical groups are G, 
(Heisenberg-Weyl group) and R@R+ (affine group), respectively (Isham 1984). 

4.1. ( Q = R )  

Following the group theoretical approach to quantisation that has been presented in 
§ 2, we consider the translation group in two dimensions T(2) = R x R which acts 
transitively, effectively and symplectically on the phase space T*R = R x R by means of 

4L!&,(q,P):= ( q + u , p - u )  
with corresponding vector fields y(a.b)((a, 6) E L( T(2))) 

~ ( ~ 3 ' )  = -a a / a q  + 6 slap. 

Piaxbl(s) = a p ( s ) + b q ( s )  
The associated momentum map 

s E R x R, yields 
{ ~ ( ' I ~ I ' ,  PiCIZb')}pB= b , a 2 -  b2a, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
which corresponds to a non-trivial cocycle of R x R. Employing a central extension, 
with the aid of R we arrive at the Heisenberg-Weyl group G, as the canonical group 
with the product law 

(4.5) 
The non-trivial Kirillov orbits in L*(G,) are found to be 2-planes perpendicular 

(U,, 01, t , ) (u2,  0 2 ,  t , ) = ( u , + u , ,  t ' l + ~ 2 , 4 + t 2 + ~ ( ~ , u ? - ~ * ~ , ) .  

to the x3 axis. With the following parametrisation for the G, group, 

f i (a lr  az, a 3 )  =exp[i(a ,q*+a,p^+a~)l  

the correspondence rule (3 .11)  is 
(4.6) 

(4.7) 

with 

f b , P ,  Y ) = y  dx, dx,dx3f(x, ,  X 2 , X d  exP[-i(aX,+PX2+rXdl (4.8) 

where f ( x l ,  x2, x3) is the extension of a classical observable f( q, p )  on a Kirillov orbit 
to the whole of L*(G,) by replacing q with x, and p with x2 according to the general 
procedure described in § 3.  In this case, the x3 and y3 integrations can be trivially 
performed and the usual Weyl correspondence rule results (cf Weyl 1928). One easily 
obtains (cf (3.27)) 

(2.rr) ' I  



3724 I Bakas and A C Kakas 

with (summation over I and j is assumed) 

(4.10) 

where c"  are the components of the inverse of the symplectic form w in the s' = (9, p )  
coordinate system. The bracket (4.9) coincides with the Moyal bracket for Q = R  
(Moyal 1949). 

4.2. ( Q = W + )  

The group R@R+ acts transitively, effectively and symplectically on T*R = R x R, by 

(4.11) k,,*dq, P) = ( A q ,  A-lp - U )  

with corresponding Hamiltonian vector fields 

a a 
y' b,r' = - rq - + ( b + r p )  - 

d q  a p  

where (b ,  r )  E L(R@R,). The associated map 

P ( h 3 ' ) ( ~ )  = b q ( s ) +  r q ( s ) p ( s )  

s E R  x R, yields 

{ p b , . r , J ,  p ( b 2 . r 2 j }  - p b , r 2 - b 2 r , . O j  
PB - 

(4.12) 

(4.13) 

(4.14) 

i.e. there are no cocycle obstructions and so {q ,  qp := T }  are the basic observables to 
base quantisation on R, with commutation relations 

[4, 7?] = ih;. (4.15) 

The non-trivial Kirillov orbits in L*(R@R,) are two 2-half planes, each of which 
(xI > 0 or x1 < 0) is globally diffeomorphic to the phase space R x R,. The correspon- 
dence rule (3.1 1) is obtained by extending any classical physical observable f( q, T )  to 
f ( x , ,  x2) defined on the whole of L*(R@R,) by simply replacing q with x, and 7~ 
with x2.  With the parametrisation 

f i (a l ,  a 2 )  = e x p [ i ( a 1 i j + a 2 ~ ) 1  (4.16) 

for the canonical group R@ R,, the product law is 

(a1 1 . 2 )  O' ( P I  9 P I )  

(4.17) 

which induces an h expansion of the { {  , }} bracket (cf (3.27)) given by 

{ { f l , f 2 I } = { f l , f 2 } P B +  h 2 l i 2 ( f I , f 2 ) + ~ ( h 3 )  (4.18) 
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(4.19) 
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